Skip to content

pme

Precision Measurement Engineering (PME).

PME is a company that manufactures instruments to measure different water properties.

cat(path, encoding='utf-8', errors='strict')

Cat reads PME MiniDot concatenated CAT files.

Parameters:

Name Type Description Default
path str

File path to read

required
encoding str

File encoding. Defaults to 'utf-8'.

'utf-8'
errors str

Error handling. Defaults to 'strict'.

'strict'

Returns:

Type Description
Dataset

xr.Dataset: xarray dataset which is compliant with CF-1.6

Source code in ocean_data_parser/parsers/pme.py
def cat(path: str, encoding: str = "utf-8", errors: str = "strict") -> xr.Dataset:
    """Cat reads PME MiniDot concatenated CAT files.

    Args:
        path (str): File path to read
        encoding (str, optional): File encoding. Defaults to 'utf-8'.
        errors (str, optional): Error handling. Defaults to 'strict'.

    Returns:
        xr.Dataset: xarray dataset which is compliant with CF-1.6
    """
    with open(path, encoding=encoding, errors=errors) as f:
        header = f.readline()

        if header != "MiniDOT Logger Concatenated Data File\n":
            raise RuntimeError(
                "Can't recognize the CAT file! \nCAT File should start with ''MiniDOT Logger Concatenated Data File'"
            )
        # Read header and column names and units
        header = [f.readline() for _ in range(6)]
        columns = [f.readline() for _ in range(2)]

        names = columns[0].replace(r"\n", "").split(",")
        units = columns[1].replace(r"\n", "")

        ds = pd.read_csv(
            f, names=names, encoding=encoding, encoding_errors=errors
        ).to_xarray()

    # Include units
    for name, units in zip(names, units):
        if units:
            ds[name].attrs[units] = units

    # Extract metadata from header
    ds.attrs = re.search(
        (
            r"Sensor:\s*(?P<instrument_sn>.*)\n"
            + r"Concatenation Date:\s*(?P<concatenation_date>.*)\n\n"
            + r"DO concentration compensated for salinity:\s*(?P<reference_salinity>.*)\n"
            + r"Saturation computed at elevation:\s*(?P<elevation>.*)\n"
        ),
        "".join(header),
    ).groupdict()

    return ds

minidot_cat(*args, **kwargs)

Rename minidot_cat to cat.

Source code in ocean_data_parser/parsers/pme.py
def minidot_cat(*args, **kwargs):
    """Rename minidot_cat to cat."""
    logger.warning("minidot_cat is deprecated, use cat instead")
    return cat(*args, **kwargs)

minidot_txt(*args, **kwargs)

Rename minidot_txt to txt.

Source code in ocean_data_parser/parsers/pme.py
def minidot_txt(*args, **kwargs):
    """Rename minidot_txt to txt."""
    logger.warning("minidot_txt is deprecated, use txt instead")
    return txt(*args, **kwargs)

minidot_txts(*args, **kwargs)

Rename minidot_txts to txts.

Source code in ocean_data_parser/parsers/pme.py
def minidot_txts(*args, **kwargs):
    """Rename minidot_txts to txts."""
    logger.warning("minidot_txts is deprecated, use txts instead")
    return txts(*args, **kwargs)

txt(path, rename_variables=True, encoding='utf-8', errors='strict', timezone='UTC', global_attributes=None)

Parse PME MiniDot txt file.

Parameters:

Name Type Description Default
path str

txt file path to read

required
rename_variables bool

description. Defaults to True.

True
encoding str

File encoding. Defaults to 'utf-8'.

'utf-8'
errors str

Error handling. Defaults to 'strict'.

'strict'
timezone str

Timezone to localize the time. Defaults to 'UTC'.

'UTC'
global_attributes dict

Global attributes to add to the dataset. Defaults to {}.

None

Returns:

Type Description
Dataset

xarray.Dataset

Source code in ocean_data_parser/parsers/pme.py
def txt(
    path: str,
    rename_variables: bool = True,
    encoding: str = "utf-8",
    errors: str = "strict",
    timezone: str = "UTC",
    global_attributes: dict = None,
) -> xr.Dataset:
    """Parse PME MiniDot txt file.

    Args:
        path (str): txt file path to read
        rename_variables (bool, optional): _description_. Defaults to True.
        encoding (str, optional): File encoding. Defaults to 'utf-8'.
        errors (str, optional): Error handling. Defaults to 'strict'.
        timezone (str, optional): Timezone to localize the time. Defaults to 'UTC'.
        global_attributes (dict, optional): Global attributes to add to the dataset. Defaults to {}.

    Returns:
        xarray.Dataset
    """

    def _append_to_history(msg):
        ds.attrs["history"] += f"{pd.Timestamp.utcnow():%Y-%m-%dT%H:%M:%SZ} {msg}"

    # Read MiniDot
    with open(
        path,
        encoding=encoding,
        errors=errors,
    ) as f:
        # Read the headre
        header = [f.readline()]
        while "Time (sec)" not in header[-1]:
            header += [f.readline()]

        # Parse metadata from header
        metadata = {}
        metadata["serial_number"] = header[0].replace("\n", "")
        metadata["software_version"] = re.search(r"OS REV: (\d+\.\d+)\s", header[1])[1]
        if "Sensor Cal" in header[1]:
            metadata["instrument_calibration"] = re.search(
                r"Sensor Cal: (\d*)", header[1]
            )[1]
        if len(header) > 2:
            for key, value in re.findall("(\\w+)\\: ([^,\n]+)", "".join(header[2:-1])):
                metadata[key.lower()] = value.strip()

        if metadata is None:
            warnings.warn("Failed to read: {path}", RuntimeWarning)
            return pd.DataFrame(), None

        # Parse column names
        columns = [item.strip() for item in header[-1].split(",")]

        # Read the data with pandas
        df = pd.read_csv(
            f,
            converters={0: lambda x: pd.Timestamp(int(x), unit="s")},
            encoding=encoding,
            encoding_errors=errors,
            names=columns,
            header=None,
        )
        ds = df.to_xarray()

    ds["Time (sec)"] = (
        ds.dims,
        ds["Time (sec)"].to_index().tz_localize(timezone),
        {"timezone": timezone},
    )

    # Global attributes
    ds.attrs = {
        **default_global_attributes,
        **metadata,
        "instrument_manufacturer": "PME",
        "history": "",
        **(global_attributes or {}),
    }

    # Retrieve raw saturation values from minidot
    #  assume:
    #   - 0 salinity
    #   - surface (pressure=0).
    if "DO (mg/l)" in ds:
        ds["DO (perc)"] = O2ctoO2s(31.2512 * ds["DO (mg/l)"], ds["T (deg C)"], S=0, P=0)
        _append_to_history(
            "Derive DO (perc) from = "
            "o2Conversion.O2ctoO2s( 31.2512*'DO (mg/l)', 'T (deg C)', S=0, P=0)",
        )

        ds["pO2 (mbar)"] = O2ctoO2p(
            31.2512 * ds["DO (mg/l)"], ds["T (deg C)"], S=0, P=0
        )
        _append_to_history(
            "Derive pO2 (mbar) from = "
            "o2Conversion.O2ctoO2s(31.2512*'DO (mg/l)', 'T (deg C)', S=0, P=0)",
        )

    # Add attributes to the dataset and rename variables to mapped names.
    for var in ds.variables:
        if var not in VARIABLE_ATTRIBUTES:
            logger.warning("Unknown variable: %s", var)
            if "(" in var and ")" in var:
                variable, unit = var.split("(")
                unit = unit.replace(")", "")
                ds[var].attrs.update({"units": unit})
            continue
        ds[var].attrs.update(VARIABLE_ATTRIBUTES[var])

    if rename_variables:
        variable_mapping = {
            variable: _rename_variable(variable) for variable in ds.variables
        }
        ds = ds.rename_vars(variable_mapping)
        ds.attrs["history"] += (
            f"\n{pd.Timestamp.now().isoformat()} Rename variables: {variable_mapping}"
        )

    ds = standardize_dataset(ds)
    return ds

txts(paths, encoding='utf-8', errors='strict')

Parse PME Minidots txt files.

Parameters:

Name Type Description Default
paths listorstr

List of file paths to read.

required
encoding str

File encoding. Defaults to 'utf-8'.

'utf-8'
errors str

Error handling. Defaults to 'strict'.

'strict'

Returns:

Type Description
Dataset

xr.Dataset: xarray dataset which is compliant with CF-1.6

Source code in ocean_data_parser/parsers/pme.py
def txts(
    paths: Union[list, str], encoding: str = "utf-8", errors: str = "strict"
) -> xr.Dataset:
    """Parse PME Minidots txt files.

    Args:
        paths (listorstr): List of file paths to read.
        encoding (str, optional): File encoding. Defaults to 'utf-8'.
        errors (str, optional): Error handling. Defaults to 'strict'.

    Returns:
        xr.Dataset: xarray dataset which is compliant with CF-1.6
    """
    # If a single string is givien, assume only one path
    if isinstance(paths, str):
        paths = [paths]

    datasets = []
    for path in paths:
        # Ignore concatenated Cat.TXT files or not TXT file
        if path.endswith("Cat.TXT") or not path.endswith(("TXT", "txt")):
            print(f"Ignore {path}")
            continue
        # Read txt file
        datasets += minidot_txt(path, encoding=encoding, errors=errors)

    return xr.merge(datasets)